FLOMEKO 2019

ID: 1007 Flow Measurement Turn Down **Analysis for DP Flow Meter** using Multiple Multivariable **Transmitters**

16:20-16:40, 26th Jun, 2019 Oral Session S8.9: Flow Metering Technology Room5 FLOMEKO2019 Portugal, Lisbon, LNEC

Akio Ito, Hiromasa Takiguchi, Morokata Aya: Yokogawa Electric Corporation Vince Cisar: VERIS Flow Measurement Group, **Armstrong International**

Outline

- 1. INTRODUCTION
- 2: The motivation of this research
- 3. Combined flow uncertainty
- 4. DP uncertainty analysis: L & H range DP comparison with CEESI master meter
- 5. Uncertainty analysis at 2.2 in H2O point
- 6. DP measurement contribution for flow measurement
- 7. CONCLUSION

1. INTRODUCTION: Differential pressure (DP) flow meter calibration at CEESI, reported at ISFFM2018

- We reported at ISFFM2018 that we performed a DP flow meter calibration to determine the combined system accuracy at the CEESI NIST traceable air laboratory located at Nunn, Colorado, USA
 - 4" VERIS Accelabar® flow primary element based on averaging pitot tube technology
 - Combines a unique toroidal nozzle design with the VERIS Verabar® averaging pitot tube
 - Yokogawa EJX® Series multivariable transmitter EJX910 H range (2000inH2O) and M range (400inH2O)

Designed with multi-sensing capabilities using built-in silicon resonant sensor technology

1. INTRODUCTION: Flow measurement result using single multivariable transmitter, reported at ISFFM2018

- For FLOMEKO2019, we focus below
- Flow rate outputs of the EJX910 transmitters were compared to CEESI flow rates determined by CEESI's NIST traceable sonic nozzles
- VERIS Accelabar® flow coefficient (K) value was corrected from EJX910 flow data to match CEESI flow data
 - The best performance was achieved during the 800 psia air tests
 - The result obtained using single EJX910 H range (2000inH2O) was reported at ISFFM2018
 - The combined linearity of VERIS Accelabar® flow primary element and Yokogawa EJX910 DP measurement was 0.5% with 15:1 turndown

1. INTRODUCTION: Flow measurement result using single multivariable transmitter, reported at ISFFM2018

- → Achieved accuracy 0.5% with 15:1 turndown
 - EJX910 H range with the 4" VERIS Accelabar®

4 Inch Accelabar, 800 psia, H Range EJX910

Combined Accelabar and Transmitter Error, Calibrated Flow Coefficient
Flow Coefficient corrected to match CEESI mass flow rate

2. The motivation of this research

- EJX910 has also L range (DP: 40inH2O) transmitter and capability of using for low flow rate measurement
 - We show that adding L range transmitter with H range transmitter, flow measurement turndown will be increased beyond 15:1 until 20:1
- We show that EJX910 has an advantage of low DP measurement under high static pressure (SP) condition

2. The motivation of this research

Flow rate equation at CEESI flow test

$$q_m = \frac{\pi}{4} K \varepsilon D^2 \sqrt{2\Delta P \rho_f}$$
 (1)

Where

K stands for flow coefficient

ε stands for expansibility

D stands for diameter of the conduit

ΔP stands for DP

 ρ_f stands for density

Flow turndown 20:1 flow rate point

		15:1 flowrate from maximum	20:1 flow rate from maximum
Flow rate (lb/sec)	12.4	0.82	0.62
Dp (InH2O)	890	3.9	2.2

- Analyze 20:1 flow point uncertainty
- Confirm if flow measurement turndown will be increased beyond 0.5% 15:1 until 20:1 in case of adding L range transmitter

3. Combined flow uncertainty: The uncertainty assumption of Flow Primary element and the density

Combined flow uncertainty

$$\frac{\delta q_m}{q_m} = \sqrt{\left(\frac{\partial K}{K}\right)^2 + \left(\frac{\partial \varepsilon}{\varepsilon}\right)^2 + \left(\frac{2\partial D}{D}\right)^2 + \left(\frac{\partial \Delta P}{2\Delta P}\right)^2 + \left(\frac{\partial \rho}{2\rho}\right)^2}$$
 (7)

The uncertainty contribution of Flow Primary element VERIS Accelabar®

$$Uncert_{pe_as} = \left(\frac{\partial K}{K}\right)^2 + \left(\frac{\partial \varepsilon}{\varepsilon}\right)^2 + \left(\frac{2\partial D}{D}\right)^2 = (0.5\%)^2 \text{ (10)}$$

- Assume that VERIS Accelabar® flow uncertainty contribution is 0.5% with 20:1 turndown derived by previous experiments
- The uncertainty contribution of the density

$$_{Uncert_{\rho \ as}} = \left(\frac{\partial \rho}{2\rho}\right)^2 = (0.05\%)^2$$
 (13)

- Assume by current EJX910 specification
 - Density uncertainty less than 0.1%

4. DP uncertainty analysis: L & H range DP comparison with CEESI master meter

- The EJX910 L range data difference between the EJX910 H range and CEESI master meter at the point is around 2%
- The EJX910 uncertainty calculated by general specification is around 1%
- The CEESI master mater uncertainty is 0.8%
- The uncertainty of
 EJX910 and the
 reference CEESI
 master meter at the
 point is relatively
 bigger than the
 difference

5. Uncertainty analysis at 2.2 inH2O point: DP reference accuracy influence

Combined flow uncertainty

$$\frac{\delta q_m}{q_m} = \sqrt{\left(\frac{\partial K}{K}\right)^2 + \left(\frac{\partial \varepsilon}{\varepsilon}\right)^2 + \left(\frac{2\partial D}{D}\right)^2 + \left(\frac{\partial \Delta P}{2\Delta P}\right)^2 + \left(\frac{\partial \rho}{2\rho}\right)^2}$$
 (7)

 \rightarrow From reference accuracy defined as $\pm 0.04\%$ of span

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{ref} = 0.04\% \times \frac{40 \ inH20}{2.2 \ inH20} = 0.7\%$$
 (15)

From L range EJX910 test data at the factory

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{ref_as} = 0.005\% \times \frac{40 \ inH2O}{2.2 \ inH2O} = 0.09\%$$
 (16)

5. Uncertainty analysis at 2.2 inH2O point: SP span effects influence

Combined flow uncertainty

$$\frac{\delta q_m}{q_m} = \sqrt{\left(\frac{\partial K}{K}\right)^2 + \left(\frac{\partial \varepsilon}{\varepsilon}\right)^2 + \left(\frac{2\partial D}{D}\right)^2 + \left(\frac{\partial \Delta P}{2\Delta P}\right)^2} + \left(\frac{\partial \rho}{2\rho}\right)^2$$
 (7)

From SP span effects per 6.9 MPa (1000 psi) change defined as ±0.075% of span

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{span} = 0.075\% \times \frac{800 \ psia}{1000 \ psia} \times \frac{40 \ inH20}{2.2 \ inH20} = 1.1\%$$
 (17)

From L range EJX910 test data at the factory

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{span_as} = 0.01\% \times \frac{800 \ psia}{1000 \ psia} \times \frac{40 \ inH20}{2.2 \ inH20} = 0.15\%$$
 (18)

5. Uncertainty analysis at 2.2 inH2O point: Assumed uncertainty at 2.2 inH2O point

Combined flow uncertainty

$$\frac{\delta q_m}{q_m} = \sqrt{\left(\frac{\partial K}{K}\right)^2 + \left(\frac{\partial \varepsilon}{\varepsilon}\right)^2 + \left(\frac{2\partial D}{D}\right)^2 + \left(\frac{\partial \Delta P}{2\Delta P}\right)^2} + \left(\frac{\partial \rho}{2\rho}\right)^2$$
 (7)

From Equation 16 (DP reference accuracy influence) and 18 (SP span effects influence)

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{as} = \left(\frac{\partial \Delta P}{\Delta P}\right)_{ref_as} + \left(\frac{\partial \Delta P}{\Delta P}\right)_{span_as} = 0.09\% + 0.15\% = 0.24\% \quad (19)$$

5. Uncertainty analysis at 2.2 inH2O point: Assumed uncertainty at 2.2 inH2O point

Combined flow uncertainty

$$\frac{\delta q_m}{q_m} = \sqrt{\left(\frac{\partial K}{K}\right)^2 + \left(\frac{\partial \varepsilon}{\varepsilon}\right)^2 + \left(\frac{2\partial D}{D}\right)^2 + \left(\frac{\partial \Delta P}{2\Delta P}\right)^2} + \left(\frac{\partial \rho}{2\rho}\right)^2$$
 (7)

DP uncertainty at 2.2 inH2O point (flow turndown 20:1) from equation 19

$$Uncert_{dp_as} = \left\{ \left(\frac{\partial \Delta P}{2\Delta P} \right)^2 \right\}_{a.s} = \left(\frac{1}{2} \times \left(\frac{\partial \Delta P}{\Delta P} \right)_{a.s} \right)^2 = \left(\frac{1}{2} \times 0.24\% \right)^2 = (0.12\%)^2$$
 (20)

5. Combined flow uncertainty: Extending flow turn down to 20:1

Combined flow uncertainty

$$\frac{\delta q_{m}}{q_{m}} = \sqrt{\left(\frac{\partial K}{K}\right)^{2} + \left(\frac{\partial \varepsilon}{\varepsilon}\right)^{2} + \left(\frac{\partial \Delta P}{D}\right)^{2} + \left(\frac{\partial \Delta P}{2\Delta P}\right)^{2} + \left(\frac{\partial \rho}{2\rho}\right)^{2}} \quad (7)$$

$$\left(\frac{\delta q_{m}}{q_{m}}\right)_{as} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2} + \left(\frac{\partial Q_{m}}{\partial Q_{m}}\right)^{2}}} = \frac{1}{\sqrt{\left(\frac$$

0.5 % with flow turn down 20:1 will be achieved using L range transmitter in addition to H range under CEESI test condition

6. DP measurement contribution for flow measurement

- The EJX910 is designed with multi-sensing capabilities using built-in silicon resonant sensor technology
- The pressure sensor based on advanced silicon resonant sensor structure contributes to the flow measurement performance which realizes uncertainty 0.5% turn down 20:1 by multiple multivariable transmitters

6. DP measurement contribution for flow measurement: Pressure sensor structure

- Two resonators are incorporated into one sensor tip inside EJX910 using MEMS technology at the location of the silicon diaphragms
- Two resonators are located where tensile strain and compressive strain occur
- SP is simultaneously measured along with the DP by this one sensor tip

6. DP measurement contribution for flow measurement: Pressure sensor signal

 $^{--}$ Changes (Δf^2) in resonance frequencies f1 and f2 of the two resonators due to the pressure

$$\Delta f_1^2 = \Delta f_{01}^2 \cdot G_{f1}(+\varepsilon_{dp1} + \varepsilon_{sp1})$$
 (22)

$$\Delta f_2^2 = \Delta f_{02}^2 \cdot G_{f2}(-\varepsilon_{dp2} + \varepsilon_{sp2}) \tag{23}$$

where

 f_0 stands for the resonance frequency when the tensile force is zero G_f stands for the squared sensitivity of the resonator (=0.2366 · (1/h)²) h stands for thickness of the resonator

 ϵ _{dp} stands for change in the tensile force due to DP

 ϵ stands for change in the tensile force due to SP

6. DP measurement contribution for flow measurement: Pressure sensor signal

→ DP and SP change from equation 22 and 23

$$\Delta DP = \Delta f_1^2 - a \cdot \Delta f_2^2$$
 (24)

$$\Delta SP = \Delta f_1^2 + b \cdot \Delta f_2^2$$
 (25)

where

ΔDP stands for DP change

ΔSP stands for SP change

- DP and SP signals can be calculated by previously determining each coefficient from actual measured appropriate data
- EJX910 dynamically & continuously minimize the effect of SP fluctuation inside the transmitter

6. DP measurement contribution for flow measurement: Pressure sensor signal

- Provides precise DP measurement under real conditions which is explained
 - in equation (15): DP reference accuracy influence
 - \rightarrow From reference accuracy defined as $\pm 0.04\%$ of span

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{ref} = 0.04\% \times \frac{40 \text{ inH2O}}{2.2 \text{ inH2O}} = 0.7\%$$
 (15)

→ From L range EJX910 test data at the factory

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{ref_as} = 0.005\% \times \frac{40 \text{ inH2O}}{2.2 \text{ inH2O}} = 0.09\%$$
 (16)

- in equation (18): SP span effects influence
 - From SP span effects per 6.9 MPa (1000 psi) change defined as \pm 0.075% of span

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{span} = 0.075\% \times \frac{800 \ psia}{1000 \ psia} \times \frac{40 \ inH20}{2.2 \ inH20} = 1.1\%$$
 (17)

From L range EJX910 test data at the factory

$$\left(\frac{\partial \Delta P}{\Delta P}\right)_{span_as} = 0.01\% \times \frac{800 \ psia}{1000 \ psia} \times \frac{40 \ inH20}{2.2 \ inH20} = 0.15\%$$
 (18)

6. DP measurement contribution for flow measurement: Pressure sensor characteristics

- a) EJX910 silicon resonant sensor is made of single crystal which is tetrahedral structure with strong bonding. It reacts ideal elastic deformation from outside force
- b) EJX910 pressure whole range measurement is conducted under elastic deformation state.
 - The deformation is proportional and uniform
 - The hysteresis is small
 - The two resonators deformation precisely match the theoretical Equation (22) and (23)
- c) Two resonators are incorporated into one sensor tip and the compensations (24) and (25) are achieved precisely $\Delta DP = \Delta f_1^2 a \cdot \Delta f_2^2$ (24)

$$\Delta SP = \Delta f_1^2 + b \cdot \Delta f_2^2$$
 (25)

d) The silicon resonant sensor is inside the vacuum cavity and the resonance is robust from outside disturbance

6. DP measurement contribution for flow measurement: Low DP measurement under high SP condition

- The two resonators signals are influenced by the DP and the SP
 - The resonators frequency shifts according to the DP and the SP changes
 - Keeping two resonators frequency relation
- The changes are proportional and uniform and the hysteresis is small
 - SP compensations of DP signal for whole ranges are achieved precisely
 - The uncertainty of the DP is small even at the condition of low DP under high SP

EJX910 has an advantage of low DP measurement under high SP condition

→ 7. CONCLUSION

- Combined DP flow meter VERIS Accelabar® flow primary element and Yokogawa EJX910 multivariable L range transmitter are analyzed
 - Adding EJX910 L range transmitter with H range transmitter,
 combined flow measurement turndown will be increased beyond
 15:1 until 20:1 under 0.5% linearity with reference flow rate.
- EJX910 is designed with multi-sensing capabilities using built-in silicon resonant sensor technology
 - EJX910 dynamically & continuously minimizes the effect of SP fluctuation with two resonators incorporated into one sensor tip
 - Provides precise DP measurement under real conditions
 - EJX910 has an advantage of low DP measurement under high SP condition with built-in silicon resonant sensor technology
- These indicate the latest progress of DP flow meter technology
 - DP flow meter has still big potential for use in industry widely

**Thank you for your kind attention.